Случайная функция - definizione. Che cos'è Случайная функция
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Случайная функция - definizione

Случайные процессы; Случайная функция; Траектория случайного процесса; Реализация случайной функции; Стационарный случайный процесс; Теория случайных процессов; Стационарные случайные процессы; Стохастический процесс; Стационарный процесс; Вероятностный процесс

Случайная функция         

функция произвольного аргумента t (заданная на множестве Т его значений и сама принимающая или числовые значения или, более общо, значения из какого-то векторного пространства) такая, что её значения определяются с помощью некоторого испытания и в зависимости от его исхода могут быть различными, причём для них существует определённое распределение вероятностей. Если множество Т конечно, то С. ф. представляет собой конечный набор случайных величин (См. Случайная величина), который можно рассматривать как одну векторную случайную величину. Из числа С. ф. с бесконечным Т наиболее изучен важнейший частный случай, когда t принимает числовые значения и является временем; соответствующая С. ф. X (t) тогда называется случайным процессом (См. Случайный процесс) (а если время t пробегает лишь целочисленные значения, то также и случайной последовательностью, или временным рядом). Если же значениями аргумента t являются точки из некоторой области многомерного пространства, то С. ф. называется случайным полем. Типичными примерами С. ф., отличных от случайных процессов, являются поля скорости, давления и температуры турбулентного течения жидкости или газа, а также значения высоты z взволнованной морской поверхности или поверхности какой-либо искусственной шероховатой пластинки.

Математическая теория С. ф. совпадает с теорией распределений вероятностей в функциональном пространстве значений функции X (t), эти распределения могут задаваться набором конечномерных распределений вероятностей для совокупностей случайных величин X (t1), X (t2),..., X (tn), отвечающих всевозможным конечным подмножествам (t1, t2,..., tn) точек множества Т, или же характеристическим функционалом С. ф. X (t), представляющим собой математическое ожидание случайной величины il [X (t)], где l [X (t)] - линейный функционал от Х (t) общего вида. Значительное развитие получила теория однородных случайных полей, являющихся частным классом С. ф., обобщающим класс стационарных случайных процессов (См. Стационарный случайный процесс).

Лит.: Выбросы случайных полей Сб. ст. М., 1972; Yaglom А. М., Second-order homogeneous random fields, в кн.: Proceedings 4th Berkeley symposium on mathematical statistics and probability, v. 2, Berk - Ins Aug., 1961; Whittle P., Stochastic processes in several dimensions, "Bulletin of the Institute of Statistics", 1963, v. 40.

СЛУЧАЙНАЯ ФУНКЦИЯ         
функция произвольного аргумента такая, что ее значения определяются случайным исходом некоторого испытания, причем для них существует определенное распределение вероятностей. Понятие случайной функции весьма близко понятию случайного процесса.
Односторонняя функция         
Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений.

Wikipedia

Случайный процесс

Случа́йный проце́сс (вероятностный процесс, случайная функция, стохастический процесс) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.

Che cos'è Случ<font color="red">а</font>йная ф<font color="red">у</font>нкция - definizione